Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 36
Filtrar
Mais filtros











Base de dados
Intervalo de ano de publicação
1.
Mol Ther ; 31(12): 3490-3501, 2023 Dec 06.
Artigo em Inglês | MEDLINE | ID: mdl-37864333

RESUMO

Mutations in the PCDH15 gene, encoding protocadherin-15, are among the leading causes of Usher syndrome type 1 (USH1F), and account for up to 12% USH1 cases worldwide. A founder truncating variant of PCDH15 has a ∼2% carrier frequency in Ashkenazi Jews accounting for nearly 60% of their USH1 cases. Although cochlear implants can restore hearing perception in USH1 patients, presently there are no effective treatments for the vision loss due to retinitis pigmentosa. We established a founder allele-specific Pcdh15 knockin mouse model as a platform to ascertain therapeutic strategies. Using a dual-vector approach to circumvent the size limitation of adeno-associated virus, we observed robust expression of exogenous PCDH15 in the retinae of Pcdh15KI mice, sustained recovery of electroretinogram amplitudes and key retinoid oxime, substantially improved light-dependent translocation of phototransduction proteins, and enhanced levels of retinal pigment epithelium-derived enzymes. Thus, our data raise hope and pave the way for future gene therapy trials in USH1F subjects.


Assuntos
Retinose Pigmentar , Síndromes de Usher , Humanos , Camundongos , Animais , Síndromes de Usher/genética , Síndromes de Usher/terapia , Retinose Pigmentar/genética , Retinose Pigmentar/terapia , Retinose Pigmentar/metabolismo , Retina/metabolismo , Mutação , Caderinas/genética , Caderinas/metabolismo
2.
Hum Mol Genet ; 32(7): 1184-1192, 2023 03 20.
Artigo em Inglês | MEDLINE | ID: mdl-36355422

RESUMO

Congenital hearing impairment (HI) is a genetically highly heterogeneous disorder in which prompt recognition and intervention are crucial to optimize outcomes. In this study, we used exome sequencing to investigate a large consanguineous Pakistani family with eight affected individuals showing bilateral severe-to-profound HI. This identified a homozygous splice region variant in STX4 (c.232 + 6T>C), which causes exon skipping and a frameshift, that segregated with HI (two-point logarithm of odds (LOD) score = 5.9). STX4, a member of the syntaxin family, is a component of the SNARE machinery involved in several vesicle transport and recycling pathways. In silico analysis showed that murine orthologue Stx4a is highly and widespread expressed in the developing and adult inner ear. Immunofluorescent imaging revealed localization of STX4A in the cell body, cell membrane and stereocilia of inner and outer hair cells. Furthermore, a morpholino-based knockdown of stx4 in zebrafish showed an abnormal startle response, morphological and developmental defects, and a disrupted mechanotransduction function in neuromast hair cells measured via FM1-43 uptake. Our findings indicate that STX4 dysfunction leads to HI in humans and zebrafish and supports the evolutionary conserved role of STX4 in inner ear development and hair cell functioning.


Assuntos
Mecanotransdução Celular , Peixe-Zebra , Adulto , Humanos , Animais , Camundongos , Peixe-Zebra/genética , Proteínas Qa-SNARE/genética , Audição/genética , Células Ciliadas Auditivas Externas
3.
J Mol Med (Berl) ; 99(11): 1571-1583, 2021 11.
Artigo em Inglês | MEDLINE | ID: mdl-34322716

RESUMO

Otitis media (OM) is common in young children and can cause hearing loss and speech, language, and developmental delays. OM has high heritability; however, little is known about OM-related molecular and genetic processes. CDHR3 was previously identified as a locus for OM susceptibility, but to date, studies have focused on how the CDHR3 p.Cys529Tyr variant increases epithelial binding of rhinovirus-C and risk for lung or sinus pathology. In order to further delineate a role for CDHR3 in OM, we performed the following: exome sequencing using DNA samples from OM-affected individuals from 257 multi-ethnic families; Sanger sequencing, logistic regression and transmission disequilibrium tests for 407 US trios or probands with OM; 16S rRNA sequencing and analysis for middle ear and nasopharyngeal samples; and single-cell RNA sequencing and differential expression analyses for mouse middle ear. From exome sequence data, we identified a novel pathogenic CDHR3 splice variant that co-segregates with OM in US and Finnish families. Additionally, a frameshift and six missense rare or low-frequency variants were identified in Finnish probands. In US probands, the CDHR3 p.Cys529Tyr variant was associated with the absence of middle ear fluid at surgery and also with increased relative abundance of Lysobacter in the nasopharynx and Streptomyces in the middle ear. Consistent with published data on airway epithelial cells and our RNA-sequence data from human middle ear tissues, Cdhr3 expression is restricted to ciliated epithelial cells of the middle ear and is downregulated after acute OM. Overall, these findings suggest a critical role for CDHR3 in OM susceptibility. KEY MESSAGES: • Novel rare or low-frequency CDHR3 variants putatively confer risk for otitis media. • Pathogenic variant CDHR3 c.1653 + 3G > A was found in nine families with otitis media. • CDHR3 p.Cys529Tyr was associated with lack of effusion and bacterial otopathogens. • Cdhr3 expression was limited to ciliated epithelial cells in mouse middle ear. • Cdhr3 was downregulated 3 h after infection of mouse middle ear.


Assuntos
Proteínas Relacionadas a Caderinas/genética , Proteínas de Membrana/genética , Otite Média/genética , Animais , Criança , Pré-Escolar , Feminino , Predisposição Genética para Doença , Humanos , Lactente , Masculino , Camundongos Endogâmicos C57BL , Microbiota/genética , Mutação , Otite Média/microbiologia , RNA Ribossômico 16S , Transcriptoma
4.
Nat Commun ; 12(1): 3906, 2021 06 23.
Artigo em Inglês | MEDLINE | ID: mdl-34162842

RESUMO

Age-related macular degeneration (AMD) is a multifactorial neurodegenerative disorder. Although molecular mechanisms remain elusive, deficits in autophagy have been associated with AMD. Here we show that deficiency of calcium and integrin binding protein 2 (CIB2) in mice, leads to age-related pathologies, including sub-retinal pigment epithelium (RPE) deposits, marked accumulation of drusen markers APOE, C3, Aß, and esterified cholesterol, and impaired visual function, which can be rescued using exogenous retinoids. Cib2 mutant mice exhibit reduced lysosomal capacity and autophagic clearance, and increased mTORC1 signaling-a negative regulator of autophagy. We observe concordant molecular deficits in dry-AMD RPE/choroid post-mortem human tissues. Mechanistically, CIB2 negatively regulates mTORC1 by preferentially binding to 'nucleotide empty' or inactive GDP-loaded Rheb. Upregulated mTORC1 signaling has been implicated in lymphangioleiomyomatosis (LAM) cancer. Over-expressing CIB2 in LAM patient-derived fibroblasts downregulates hyperactive mTORC1 signaling. Thus, our findings have significant implications for treatment of AMD and other mTORC1 hyperactivity-associated disorders.


Assuntos
Autofagia/genética , Proteínas de Ligação ao Cálcio/genética , Alvo Mecanístico do Complexo 1 de Rapamicina/genética , Epitélio Pigmentado da Retina/metabolismo , Transdução de Sinais/genética , Animais , Células COS , Proteínas de Ligação ao Cálcio/deficiência , Células Cultivadas , Chlorocebus aethiops , Modelos Animais de Doenças , Células HEK293 , Humanos , Lisossomos/metabolismo , Degeneração Macular/genética , Degeneração Macular/patologia , Alvo Mecanístico do Complexo 1 de Rapamicina/metabolismo , Camundongos Knockout , Retina/metabolismo
5.
Biomed Res Int ; 2021: 5584788, 2021.
Artigo em Inglês | MEDLINE | ID: mdl-33997018

RESUMO

The inner ear is an essential part of a well-developed and well-coordinated hearing system. However, hearing loss can make communication and interaction more difficult. Inherited hearing loss (HL) can occur from pathogenic genetic variants that negatively alter the intricate inner ear sensory mechanism. Recessively inherited forms of HL are highly heterogeneous and account for a majority of prelingual deafness. The current study is designed to investigate genetic causes of HL in three consanguineous Pakistani families. After IRB approval, the clinical history and pure tone audiometric data was obtained for the clinical diagnosis of HL segregating in these three Pakistani families. We performed whole exome sequencing (WES) followed by Sanger sequencing in order to identify and validate the HL-associated pathogenic variants, respectively. The 3-D molecular modeling and the Ramachandran analysis of the identified missense variants were compiled to evaluate the impact of the variants on the encoded proteins. Clinical evaluation revealed prelingual severe to profound sensorineural HL segregating among the affected individuals in all three families. Genetic analysis revealed segregation of several novel variants associated with HL, including a canonical splice-site variant (c.55-2A>G) of PTPRQ in family GCFHL-01, a missense variant [c.1079G>A; p.(Arg360Gln)] of SERPINB6 in family LUHL-01, and an insertion variant (c.10208-10211insCCACCAGGCCCGTGCCTC) within MYO15A in family LUHL-011. All the identified variants had very low frequencies in the control databases. The molecular modeling of p.Arg360Gln missense variant also predicted impaired folding of SERPINB6 protein. This study reports the identification of novel disease-causing variants in three known deafness genes and further highlights the genetic heterogeneity of HL in Pakistani population.


Assuntos
Predisposição Genética para Doença , Perda Auditiva/genética , Mutação/genética , Miosinas/genética , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/genética , Serpinas/genética , Alelos , Análise Mutacional de DNA , Família , Feminino , Humanos , Masculino , Modelos Moleculares , Miosinas/química , Paquistão , Linhagem , Fenótipo , Proteínas Tirosina Fosfatases Classe 3 Semelhantes a Receptores/química , Serpinas/química
6.
Genes (Basel) ; 12(4)2021 03 28.
Artigo em Inglês | MEDLINE | ID: mdl-33800529

RESUMO

Melanin pigment helps protect our body from broad wavelength solar radiation and skin cancer. Among other pigmentation disorders in humans, albinism is reported to manifest in both syndromic and nonsyndromic forms as well as with varying inheritance patterns. Oculocutaneous albinism (OCA), an autosomal recessive nonsyndromic form of albinism, presents as partial to complete loss of melanin in the skin, hair, and iris. OCA has been known to be caused by pathogenic variants in seven different genes, so far, according to all the currently published population studies. However, the detection rate of alleles causing OCA varies from 50% to 90%. One of the significant challenges of uncovering the pathological variant underlying disease etiology is inter- and intra-familial locus heterogeneity. This problem is especially pertinent in highly inbred populations. As examples of such familial locus heterogeneity, we present nine consanguineous Pakistani families with segregating OCA due to variants in one or two different known albinism-associated genes. All of the identified variants are predicted to be pathogenic, which was corroborated by several in silico algorithms and association with diverse clinical phenotypes. We report an individual affected with OCA carries heterozygous, likely pathogenic variants in TYR and OCA2, raising the question of a possible digenic inheritance. Altogether, our study highlights the significance of exome sequencing for the complete genetic diagnosis of inbred families and provides the ramifications of potential genetic interaction and digenic inheritance of variants in the TYR and OCA2 genes.


Assuntos
Albinismo Oculocutâneo/genética , Proteínas de Membrana Transportadoras/genética , Monofenol Mono-Oxigenase/genética , Polimorfismo de Nucleotídeo Único , Adolescente , Adulto , Idoso , Criança , Pré-Escolar , Consanguinidade , Feminino , Estudos de Associação Genética , Heterogeneidade Genética , Predisposição Genética para Doença , Heterozigoto , Humanos , Masculino , Proteínas de Membrana Transportadoras/química , Pessoa de Meia-Idade , Modelos Moleculares , Linhagem , Sequenciamento do Exoma , Adulto Jovem
7.
J Med Genet ; 58(7): 442-452, 2021 07.
Artigo em Inglês | MEDLINE | ID: mdl-32709676

RESUMO

BACKGROUND: Otitis media (OM) susceptibility has significant heritability; however, the role of rare variants in OM is mostly unknown. Our goal is to identify novel rare variants that confer OM susceptibility. METHODS: We performed exome and Sanger sequencing of >1000 DNA samples from 551 multiethnic families with OM and unrelated individuals, RNA-sequencing and microbiome sequencing and analyses of swabs from the outer ear, middle ear, nasopharynx and oral cavity. We also examined protein localisation and gene expression in infected and healthy middle ear tissues. RESULTS: A large, intermarried pedigree that includes 81 OM-affected and 53 unaffected individuals cosegregates two known rare A2ML1 variants, a common FUT2 variant and a rare, novel pathogenic variant c.1682A>G (p.Glu561Gly) within SPINK5 (LOD=4.09). Carriage of the SPINK5 missense variant resulted in increased relative abundance of Microbacteriaceae in the middle ear, along with occurrence of Microbacteriaceae in the outer ear and oral cavity but not the nasopharynx. Eight additional novel SPINK5 variants were identified in 12 families and individuals with OM. A role for SPINK5 in OM susceptibility is further supported by lower RNA counts in variant carriers, strong SPINK5 localisation in outer ear skin, faint localisation to middle ear mucosa and eardrum and increased SPINK5 expression in human cholesteatoma. CONCLUSION: SPINK5 variants confer susceptibility to non-syndromic OM. These variants potentially contribute to middle ear pathology through breakdown of mucosal and epithelial barriers, immunodeficiency such as poor vaccination response, alteration of head and neck microbiota and facilitation of entry of opportunistic pathogens into the middle ear.


Assuntos
Microbiota , Otite Média/genética , Otite Média/microbiologia , Inibidor de Serinopeptidase do Tipo Kazal 5/genética , Adulto , Animais , Bactérias/classificação , Bactérias/genética , Criança , Suscetibilidade a Doenças/microbiologia , Orelha Externa/microbiologia , Orelha Média/microbiologia , Exoma , Feminino , Predisposição Genética para Doença , Humanos , Masculino , Camundongos , Boca/microbiologia , Nasofaringe/microbiologia , Linhagem , Análise de Sequência de DNA , Análise de Sequência de RNA
8.
Pigment Cell Melanoma Res ; 33(4): 556-565, 2020 07.
Artigo em Inglês | MEDLINE | ID: mdl-32274888

RESUMO

Skin pigmentation is a highly heterogeneous trait with diverse consequences worldwide. SLC24A5, encoding a potent K+ -dependent Na+ /Ca2+ exchanger, is among the known color-coding genes that participate in melanogenesis by maintaining pH in melanosomes. Deficient SLC24A5 activity results in oculocutaneous albinism (OCA) type 6 in humans. In this study, by utilizing a exome sequencing (ES) approach, we identified two new variants [p. (Gly110Arg) and p. (IIe189Ilefs*1)] of SLC24A5 cosegregating with the OCA phenotype, including nystagmus, strabismus, foveal hypoplasia, albinotic fundus, and vision impairment, in three large consanguineous Pakistani families. Both of these variants failed to rescue the pigmentation in zebrafish slc24a5 morphants, confirming the pathogenic effects of the variants. We also phenotypically characterized a commercially available zebrafish mutant line (slc24a5ko ) that harbors a nonsense (p.Tyr208*) allele of slc24a5. Similar to morphants, homozygous slc24a5ko mutants had significantly reduced melanin content and pigmentation. Next, we used these slc24a5ko zebrafish mutants to test the efficacy of nitisinone, a compound known to increase ocular and fur pigmentation in OCA1 (TYR) mutant mice. Treatment of slc24a5ko mutant zebrafish embryos with varying doses of nitisinone did not improve melanin production and pigmentation, suggesting that treatment with nitisinone is unlikely to be therapeutic in OCA6 patients.


Assuntos
Albinismo Oculocutâneo/genética , Antiporters/genética , Cicloexanonas/farmacologia , Variação Genética , Nitrobenzoatos/farmacologia , Proteínas de Peixe-Zebra/genética , Peixe-Zebra/genética , Adolescente , Adulto , Idoso , Animais , Criança , Segregação de Cromossomos/genética , Modelos Animais de Doenças , Família , Feminino , Fundo de Olho , Humanos , Larva/efeitos dos fármacos , Masculino , Pessoa de Meia-Idade , Morfolinos/farmacologia , Paquistão , Linhagem , Fenótipo , Pigmentação da Pele/efeitos dos fármacos , Resultado do Tratamento , Adulto Jovem
9.
Genes (Basel) ; 10(12)2019 12 10.
Artigo em Inglês | MEDLINE | ID: mdl-31835641

RESUMO

Hearing loss is a genetically heterogeneous disorder affecting approximately 360 million people worldwide and is among the most common sensorineural disorders. Here, we report a genetic analysis of seven large consanguineous families segregating prelingual sensorineural hearing loss. Whole-exome sequencing (WES) revealed seven different pathogenic variants segregating with hearing loss in these families, three novel variants (c.1204G>A, c.322G>T, and c.5587C>T) in TMPRSS3, ESRRB, and OTOF, and four previously reported variants (c.208C>T, c.6371G>A, c.226G>A, and c.494C>T) in LRTOMT, MYO15A, KCNE1, and LHFPL5, respectively. All identified variants had very low frequencies in the control databases and were predicted to have pathogenic effects on the encoded proteins. In addition to being familial, we also found intersibship locus heterogeneity in the evaluated families. The known pathogenic c.226C>T variant identified in KCNE1 only segregates with the hearing loss phenotype in a subset of affected members of the family GCNF21. This study further highlights the challenges of identifying disease-causing variants for highly heterogeneous disorders and reports the identification of three novel and four previously reported variants in seven known deafness genes.


Assuntos
Surdez/genética , Perda Auditiva Neurossensorial/genética , Perda Auditiva/genética , Adolescente , Adulto , Idoso , Criança , Família , Feminino , Predisposição Genética para Doença , Testes Genéticos , Variação Genética/genética , Homozigoto , Humanos , Masculino , Proteínas de Membrana/genética , Pessoa de Meia-Idade , Proteínas de Neoplasias/genética , Paquistão/epidemiologia , Linhagem , Receptores de Estrogênio/genética , Serina Endopeptidases/genética , Sequenciamento do Exoma/métodos
10.
Mol Vis ; 25: 144-154, 2019.
Artigo em Inglês | MEDLINE | ID: mdl-30820150

RESUMO

Purpose: Primary congenital glaucoma (PCG) is a clinically and genetically heterogeneous disease. The present study was undertaken to find the genetic causes of PCG segregating in 36 large consanguineous Pakistani families. Methods: Ophthalmic examination including fundoscopy, or slit-lamp microscopy was performed to clinically characterize the PCG phenotype. Genomic nucleotide sequences of the CYP1B1 and LTBP2 genes were analyzed with either Sanger or whole exome sequencing. In silico prediction programs were used to assess the pathogenicity of identified alleles. ClustalW alignments were performed to determine evolutionary conservation, and three-dimensional (3D) modeling was performed using HOPE and Phyre2 software. Results: Among the known loci, mutations in CYP1B1 and LTBP2 are the common causes of PCG. Therefore, we analyzed the genomic nucleotide sequences of CYP1B1 and LTBP2, and detected probable pathogenic variants cosegregating with PCG in 14 families. These included the three novel (c.542T>A, c.1436A>G, and c.1325delC) and five known (c.868dupC, c.1168C>T, c.1169G>A, c.1209InsTCATGCCACC, and c.1310C>T) variants in CYP1B1. Two of the novel variants are missense substitutions [p.(Leu181Gln), p.(Gln479Arg)], which replaced evolutionary conserved amino acids, and are predicted to be pathogenic by various in silico programs, while the third variant (c.1325delC) is predicted to cause reading frameshift and premature truncation of the protein. A single mutation, p.(Arg390His), causes PCG in six (~43%) of the 14 CYP1B1 mutations harboring families, and thus, is the most common variant in this cohort. Surprisingly, we did not find any LTBP2 pathogenic variants in the families, which further supports the genetic heterogeneity of PCG in the Pakistani population. Conclusions: In conclusion, results of the present study enhance our understanding of the genetic basis of PCG, support the notion of a genetic modifier of CYP1B1, and contribute to the development of genetic testing protocols and genetic counseling for PCG in Pakistani families.


Assuntos
Citocromo P-450 CYP1B1/genética , Heterogeneidade Genética , Glaucoma/genética , Mutação , Adolescente , Adulto , Idoso , Alelos , Sequência de Aminoácidos , Substituição de Aminoácidos , Criança , Pré-Escolar , Consanguinidade , Análise Mutacional de DNA , Feminino , Expressão Gênica , Frequência do Gene , Glaucoma/congênito , Glaucoma/patologia , Glaucoma/cirurgia , Humanos , Lactente , Proteínas de Ligação a TGF-beta Latente/genética , Masculino , Pessoa de Meia-Idade , Paquistão , Linhagem , Alinhamento de Sequência , Trabeculectomia/métodos
11.
Int J Biochem Cell Biol ; 109: 40-58, 2019 04.
Artigo em Inglês | MEDLINE | ID: mdl-30710753

RESUMO

The role of protein phosphatase 2ACα (PP2ACα) in brain development is poorly understood. To understand the function of PP2ACα in neurogenesis, we inactivated Pp2acα gene in the central nervous system (CNS) of mice by Cre/LoxP system and generated the PP2ACα deficient mice (designated as the Pp2acα-/- mice). PP2ACα deletion results in DNA damage in neuroprogenitor cells (NPCs), which impairs memory formation and cortical neurogenesis. We first identify that PP2ACα can directly associate with Ataxia telangiectasia mutant kinase (ATM) and Ataxia telangiectasia/Rad3-related kinase (ATR) in neocortex and NPCs. Importantly, the P53 and hypermethylated in cancer 1 (HIC1) function complex, the newly found down-stream executor of the ATR/ATM cascade, will be translocated into nuclei and interact with homeodomain interacting protein kinase 2 (HIPK2) to respond to DNA damage. Notably, HICI plays a direct transcriptional regulatory role in HIPK2 gene expression. The interplay among P53, HIC1 and HIPK2 maintains DNA stability in neuroprogenitor cells. Taken together, our findings highlight a new role of PP2ACα in regulating early neurogenesis through maintaining DNA stability in neuroprogenitor cells. The P53/HIC/HIPK2 regulation loop, directly targeted by the ATR/ATM cascade, is involved in DNA repair in neuroprogenitor cells.


Assuntos
Encéfalo/crescimento & desenvolvimento , Dano ao DNA , Deleção de Genes , Células-Tronco Neurais/metabolismo , Proteína Fosfatase 2C/deficiência , Proteína Fosfatase 2C/genética , Animais , Encéfalo/citologia , Encéfalo/fisiologia , Proteínas de Transporte/metabolismo , Proliferação de Células , Cognição , Histonas/metabolismo , Fatores de Transcrição Kruppel-Like/metabolismo , Camundongos , Microcefalia/enzimologia , Microcefalia/genética , Neocórtex/metabolismo , Células-Tronco Neurais/citologia , Proteínas Serina-Treonina Quinases/metabolismo , Proteína Supressora de Tumor p53/metabolismo
12.
J Bone Miner Res ; 34(2): 375-386, 2019 02.
Artigo em Inglês | MEDLINE | ID: mdl-30395363

RESUMO

Polydactyly is a common congenital anomaly of the hand and foot. Postaxial polydactyly (PAP) is characterized by one or more posterior or postaxial digits. In a Pakistani family with autosomal recessive nonsyndromic postaxial polydactyly type A (PAPA), we performed genomewide genotyping, linkage analysis, and exome and Sanger sequencing. Exome sequencing revealed a homozygous nonsense variant (c.478C>T, p.[Arg160*]) in the FAM92A gene within the mapped region on 8q21.13-q24.12 that segregated with the PAPA phenotype. We found that FAM92A is expressed in the developing mouse limb and E11.5 limb bud including the progress zone and the apical ectodermal ridge, where it strongly localizes at the cilia level, suggesting an important role in limb patterning. The identified variant leads to a loss of the FAM92A/Chibby1 complex that is crucial for ciliogenesis and impairs the recruitment and the colocalization of FAM92A with Chibby1 at the base of the cilia. In addition, we show that Fam92a-/- homozygous mice also exhibit an abnormal digit morphology, including metatarsal osteomas and polysyndactyly, in addition to distinct abnormalities on the deltoid tuberosity of their humeri. In conclusion, we present a new nonsyndromic PAPA ciliopathy due to a loss-of-function variant in FAM92A. © 2018 American Society for Bone and Mineral Research.


Assuntos
Ciliopatias , Códon sem Sentido , Exoma , Dedos/anormalidades , Homozigoto , Polidactilia , Proteínas , Dedos do Pé/anormalidades , Animais , Proteínas de Transporte/genética , Proteínas de Transporte/metabolismo , Ciliopatias/genética , Ciliopatias/metabolismo , Ciliopatias/patologia , Feminino , Dedos/patologia , Humanos , Masculino , Camundongos , Camundongos Knockout , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Polidactilia/genética , Polidactilia/metabolismo , Polidactilia/patologia , Proteínas/genética , Proteínas/metabolismo , Dedos do Pé/patologia , Sequenciamento do Exoma
13.
J Clin Invest ; 128(4): 1509-1522, 2018 04 02.
Artigo em Inglês | MEDLINE | ID: mdl-29408807

RESUMO

A modifier variant can abrogate the risk of a monogenic disorder. DFNM1 is a locus on chromosome 1 encoding a dominant suppressor of human DFNB26 recessive, profound deafness. Here, we report that DFNB26 is associated with a substitution (p.Gly116Glu) in the pleckstrin homology domain of GRB2-associated binding protein 1 (GAB1), an essential scaffold in the MET proto-oncogene, receptor tyrosine kinase/HGF (MET/HGF) pathway. A dominant substitution (p.Arg544Gln) of METTL13, encoding a predicted methyltransferase, is the DFNM1 suppressor of GAB1-associated deafness. In zebrafish, human METTL13 mRNA harboring the modifier allele rescued the GAB1-associated morphant phenotype. In mice, GAB1 and METTL13 colocalized in auditory sensory neurons, and METTL13 coimmunoprecipitated with GAB1 and SPRY2, indicating at least a tripartite complex. Expression of MET-signaling genes in human lymphoblastoid cells of individuals homozygous for p.Gly116Glu GAB1 revealed dysregulation of HGF, MET, SHP2, and SPRY2, all of which have reported variants associated with deafness. However, SPRY2 was not dysregulated in normal-hearing humans homozygous for both the GAB1 DFNB26 deafness variant and the dominant METTL13 deafness suppressor, indicating a plausible mechanism of suppression. Identification of METTL13-based modification of MET signaling offers a potential therapeutic strategy for a wide range of associated hearing disorders. Furthermore, MET signaling is essential for diverse functions in many tissues including the inner ear. Therefore, identification of the modifier of MET signaling is likely to have broad clinical implications.


Assuntos
Proteínas Adaptadoras de Transdução de Sinal/metabolismo , Perda Auditiva Neurossensorial/metabolismo , Metiltransferases/metabolismo , Mutação de Sentido Incorreto , Células Receptoras Sensoriais/metabolismo , Transdução de Sinais , Proteínas Adaptadoras de Transdução de Sinal/genética , Substituição de Aminoácidos , Animais , Perda Auditiva Neurossensorial/genética , Perda Auditiva Neurossensorial/patologia , Humanos , Metiltransferases/genética , Camundongos , Camundongos Knockout , Proto-Oncogene Mas , Células Receptoras Sensoriais/patologia , Peixe-Zebra
14.
Am J Hum Genet ; 101(3): 428-440, 2017 Sep 07.
Artigo em Inglês | MEDLINE | ID: mdl-28823707

RESUMO

Pontocerebellar hypoplasia (PCH) is a heterogeneous group of rare recessive disorders with prenatal onset, characterized by hypoplasia of pons and cerebellum. Mutations in a small number of genes have been reported to cause PCH, and the vast majority of PCH cases are explained by mutations in TSEN54, which encodes a subunit of the tRNA splicing endonuclease complex. Here we report three families with homozygous truncating mutations in TBC1D23 who display moderate to severe intellectual disability and microcephaly. MRI data from available affected subjects revealed PCH, small normally proportioned cerebellum, and corpus callosum anomalies. Furthermore, through in utero electroporation, we show that downregulation of TBC1D23 affects cortical neuron positioning. TBC1D23 is a member of the Tre2-Bub2-Cdc16 (TBC) domain-containing RAB-specific GTPase-activating proteins (TBC/RABGAPs). Members of this protein family negatively regulate RAB proteins and modulate the signaling between RABs and other small GTPases, some of which have a crucial role in the trafficking of intracellular vesicles and are involved in neurological disorders. Here, we demonstrate that dense core vesicles and lysosomal trafficking dynamics are affected in fibroblasts harboring TBC1D23 mutation. We propose that mutations in TBC1D23 are responsible for a form of PCH with small, normally proportioned cerebellum and should be screened in individuals with syndromic pontocereballar hypoplasia.


Assuntos
Doenças Cerebelares/genética , Cerebelo/anormalidades , Proteínas Ativadoras de GTPase/genética , Homozigoto , Microcefalia/genética , Mutação , Malformações do Sistema Nervoso/genética , Neurônios/patologia , Adolescente , Animais , Células Cultivadas , Doenças Cerebelares/patologia , Cerebelo/patologia , Criança , Pré-Escolar , Deficiências do Desenvolvimento/genética , Deficiências do Desenvolvimento/patologia , Embrião de Mamíferos/metabolismo , Embrião de Mamíferos/patologia , Feminino , Humanos , Deficiência Intelectual/genética , Deficiência Intelectual/patologia , Masculino , Camundongos , Microcefalia/patologia , Malformações do Sistema Nervoso/patologia , Neuroblastoma/genética , Neuroblastoma/patologia , Crescimento Neuronal , Neurônios/metabolismo , Linhagem
15.
Hum Mutat ; 37(10): 991-1003, 2016 10.
Artigo em Inglês | MEDLINE | ID: mdl-27375115

RESUMO

Deafness in humans is a common neurosensory disorder and is genetically heterogeneous. Across diverse ethnic groups, mutations of MYO15A at the DFNB3 locus appear to be the third or fourth most common cause of autosomal-recessive, nonsyndromic deafness. In 49 of the 67 exons of MYO15A, there are currently 192 recessive mutations identified, including 14 novel mutations reported here. These mutations are distributed uniformly across MYO15A with one enigmatic exception; the alternatively spliced giant exon 2, encoding 1,233 residues, has 17 truncating mutations but no convincing deafness-causing missense mutations. MYO15A encodes three distinct isoform classes, one of which is 395 kDa (3,530 residues), the largest member of the myosin superfamily of molecular motors. Studies of Myo15 mouse models that recapitulate DFNB3 revealed two different pathogenic mechanisms of hearing loss. In the inner ear, myosin 15 is necessary both for the development and the long-term maintenance of stereocilia, mechanosensory sound-transducing organelles that extend from the apical surface of hair cells. The goal of this Mutation Update is to provide a comprehensive review of mutations and functions of MYO15A.


Assuntos
Surdez/genética , Surdez/patologia , Mutação , Miosinas/genética , Miosinas/metabolismo , Processamento Alternativo , Animais , Surdez/metabolismo , Modelos Animais de Doenças , Orelha Interna/crescimento & desenvolvimento , Orelha Interna/metabolismo , Orelha Interna/patologia , Éxons , Regulação da Expressão Gênica no Desenvolvimento , Humanos , Camundongos , Estereocílios/metabolismo , Estereocílios/patologia
17.
PLoS One ; 10(11): e0143606, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26599238

RESUMO

Radiotherapy of individuals suffering with head & neck or brain tumors subserve the risk of sensorineural hearing loss. Here, we evaluated the protective effect of Aminothiol PrC-210 (3-(methyl-amino)-2-((methylamino)methyl)propane-1-thiol) on the irradiated inner ear of guinea pigs. An intra-peritoneal or intra-tympanic dose of PrC-210 was administered prior to receiving a dose of gamma radiation (3000 cGy) to each ear. Auditory Brainstem Responses (ABRs) were recorded one week and two weeks after the radiation and compared with the sham animal group. ABR thresholds of guinea pigs that received an intra-peritoneal dose of PrC-210 were significantly better compared to the non-treated, control animals at one week post-radiation. Morphologic analysis of the inner ear revealed significant inflammation and degeneration of the spiral ganglion in the irradiated animals not treated with PrC-210. In contrast, when treated with PrC-210 the radiation effect and injury to the spiral ganglion was significantly alleviated. PrC-210 had no apparent cytotoxic effect in vivo and did not affect the morphology or count of cochlear hair cells. These findings suggest that aminothiol PrC-210 attenuated radiation-induced cochlea damage for at least one week and protected hearing.


Assuntos
Diaminas/farmacologia , Orelha Interna/efeitos da radiação , Perda Auditiva Neurossensorial/prevenção & controle , Protetores contra Radiação/farmacologia , Compostos de Sulfidrila/farmacologia , Animais , Audiometria de Tons Puros , Cóclea/efeitos dos fármacos , Cóclea/efeitos da radiação , Relação Dose-Resposta à Radiação , Orelha Interna/efeitos dos fármacos , Potenciais Evocados Auditivos do Tronco Encefálico , Cobaias , Células Ciliadas Auditivas/efeitos dos fármacos , Células Ciliadas Auditivas/efeitos da radiação , Audição , Perda Auditiva Neurossensorial/etiologia , Injeções Intraperitoneais , Radioterapia/efeitos adversos , Gânglio Espiral da Cóclea/efeitos dos fármacos , Gânglio Espiral da Cóclea/efeitos da radiação , Compostos de Sulfidrila/química
18.
PLoS One ; 10(10): e0133082, 2015.
Artigo em Inglês | MEDLINE | ID: mdl-26426422

RESUMO

Hearing loss is a complex disorder caused by both genetic and environmental factors. Previously, mutations in CIB2 have been identified as a common cause of genetic hearing loss in Pakistani and Turkish populations. Here we report a novel (c.556C>T; p.(Arg186Trp)) transition mutation in the CIB2 gene identified through whole exome sequencing (WES) in a Caribbean Hispanic family with non-syndromic hearing loss. CIB2 belongs to the family of calcium-and integrin-binding (CIB) proteins. The carboxy-termini of CIB proteins are associated with calcium binding and intracellular signaling. The p.(Arg186Trp) mutation is localized within predicted type II PDZ binding ligand at the carboxy terminus. Our ex vivo studies revealed that the mutation did not alter the interactions of CIB2 with Whirlin, nor its targeting to the tips of hair cell stereocilia. However, we found that the mutation disrupts inhibition of ATP-induced Ca2+ responses by CIB2 in a heterologous expression system. Our findings support p.(Arg186Trp) mutation as a cause for hearing loss in this Hispanic family. In addition, it further highlights the necessity of the calcium binding property of CIB2 for normal hearing.


Assuntos
Proteínas de Ligação ao Cálcio/química , Proteínas de Ligação ao Cálcio/genética , Perda Auditiva/genética , Hispânico ou Latino/genética , Mutação de Sentido Incorreto , Linhagem , Adulto , Sequência de Aminoácidos , Animais , Células COS , Cálcio/metabolismo , Proteínas de Ligação ao Cálcio/metabolismo , Criança , Chlorocebus aethiops , Exoma/genética , Feminino , Células HEK293 , Perda Auditiva/metabolismo , Perda Auditiva/patologia , Humanos , Lactente , Masculino , Proteínas de Membrana/metabolismo , Modelos Moleculares , Miosinas/metabolismo , Estrutura Secundária de Proteína , Estereocílios/metabolismo
19.
Pigment Cell Melanoma Res ; 28(6): 730-5, 2015 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-26197705

RESUMO

Melanocortin 1 receptor (MC1R), a Gs protein-coupled receptor of the melanocyte's plasma membrane, is a major determinant of skin pigmentation and phototype. Upon activation by α-melanocyte stimulating hormone, MC1R triggers the cAMP cascade to stimulate eumelanogenesis. We used whole-exome sequencing to identify causative alleles in Pakistani families with skin and hair hypopigmentation. Six MC1R mutations segregated with the phenotype in seven families, including a p.Val174del in-frame deletion and a p.Tyr298* nonsense mutation, that were analyzed for function in heterologous HEK293 cells. p.Tyr298* MC1R showed no agonist-induced signaling to the cAMP or ERK pathways, nor detectable agonist binding. Conversely, signaling was comparable for p.Val174del and wild-type in HEK cells overexpressing the proteins, but binding analysis suggested impaired cell surface expression. Flow cytometry and confocal imaging studies revealed reduced plasma membrane expression of p.Val174del and p.Tyr298*. Therefore, p.Tyr298* was a total loss-of-function (LOF) allele, while p.Val174del displayed a partial LOF attribute.


Assuntos
Alelos , Mutação/genética , Receptor Tipo 1 de Melanocortina/genética , Família , Feminino , Humanos , Hipopigmentação/genética , Masculino , Paquistão , Linhagem , Fenótipo
20.
Eur J Hum Genet ; 23(4): 473-80, 2015 Apr.
Artigo em Inglês | MEDLINE | ID: mdl-25052312

RESUMO

We assessed a large consanguineous Pakistani family (PKAB157) segregating early onset low vision problems. Funduscopic and electroretinographic evaluation of affected individuals revealed juvenile cone-rod dystrophy (CRD) with maculopathy. Other clinical symptoms included loss of color discrimination, photophobia and nystagmus. Whole-exome sequencing, segregation and haplotype analyses demonstrated that a transition variant (c.955T>C; p.(Cys319Arg)) in CNGA3 co-segregated with the CRD phenotype in family PKAB157. The ability of CNGA3 channel to influx calcium in response to agonist, when expressed either alone or together with the wild-type CNGB3 subunit in HEK293 cells, was completely abolished due to p.Cys319Arg variant. Western blotting and immunolocalization studies suggest that a decreased channel density in the HEK293 cell membrane due to impaired folding and/or trafficking of the CNGA3 protein is the main pathogenic effect of the p.Cys319Arg variant. Mutant alleles of the human cone photoreceptor cyclic nucleotide-gated channel (CNGA3) are frequently associated with achromatopsia. In rare cases, variants in CNGA3 are also associated with cone dystrophy, Leber's congenital amaurosis and oligo cone trichromacy. The identification of predicted p.(Cys319Arg) missense variant in CNGA3 expands the repertoire of the known genetic causes of CRD and phenotypic spectrum of CNGA3 alleles.


Assuntos
Canais de Cátion Regulados por Nucleotídeos Cíclicos/genética , Homozigoto , Mutação de Sentido Incorreto , Retinose Pigmentar/genética , Alelos , Povo Asiático/genética , Defeitos da Visão Cromática/genética , Biologia Computacional , Consanguinidade , Eletrorretinografia , Variação Genética , Estudo de Associação Genômica Ampla , Células HEK293 , Haplótipos , Humanos , Amaurose Congênita de Leber/genética , Paquistão , Fenótipo , Células Fotorreceptoras Retinianas Cones/patologia , Análise de Sequência de DNA
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA